¢2 PRENTICE

F)
ee HALL

JAVA

Volume |—Fundamentals

TENTH EDlTlDNA

CAY S. HORSTMANN

Core Java®

Volume |—Fundamentals
Tenth Edition

This page intentionally left blank

Core Java°

Volume I—Fundamentals
Tenth Edition

Cay S. Horstmann

[&4
&4
[X J

PRENTICE
HALL

Boston ® Columbus ¢ Indianapolis ® New York ¢ San Francisco ® Amsterdam ¢ Cape Town
Dubai ® London ¢ Madrid ¢ Milan ® Munich e Paris ® Montreal ® Toronto ® Delhi ® Mexico City

Sao Paulo ¢ Sidney ® Hong Kong ® Seoul ® Singapore ® Taipei ® Tokyo

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact
international@pearsoned.com.

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data

Names: Horstmann, Cay S., 1959- author.

Title: Core Java / Cay S. Horstmann.

Description: Tenth edition. | New York : Prentice Hall, [2016] | Includes
index.

Identifiers: LCCN 2015038763 | ISBN 9780134177304 (volume 1 : pbk. : alk.
paper) | ISBN 0134177304 (volume 1 : pbk. : alk. paper)

Subjects: LCSH: Java (Computer program language)

Classification: LCC QA76.73.]38 H6753 2016 | DDC 005.13/3—dc23

LC record available at http://lcen.loc.gov /2015038763

Copyright © 2016 Oracle and/or its affiliates. All rights reserved.
500 Oracle Parkway, Redwood Shores, CA 94065

Portions © Cay S. Horstmann

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms and the appropriate contacts within the Pearson Education
Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

Oracle America Inc. does not make any representations or warranties as to the accuracy,
adequacy or completeness of any information contained in this work, and is not responsible
for any errors or omissions.

ISBN-13: 978-0-13-417730-4
ISBN-10: 0-13-417730-4

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,
Indiana.
First printing, December 2015

http://lccn.loc.gov/2015038763
http://www.pearsoned.com/permissions/

Contents

PrefaCeoooueeeeeeeeeeeee e Xix
ACKNOWIEAGMENIES ... XXV
Chapter 1: An Introduction to Javacceeeeicciicceeecccierrrrr e 1
1.1 Java as a Programming Platformcccccceoeviiiinnniiinccceene 1
1.2 The Java “White Paper” Buzzwordsccooeeiniiiiiiiiiiic 2
1.21 SIMPLE e 3

122 Object-Oriented ..o, 4

1.2.3 Distributed ..o 4

124 RODUSE oo 4

1.2.5 SECUTE oo 4

1.2.6 Architecture-Neutral ..o, 5

1.2.7 Portable ... 6

1.2.8 Interpreted ... 7

1.2.9 High-Performance ..o 7

1.2.10 Multithreadedccooiiiiiiiii 7

1.2.11 DyNamIC oottt 8

1.3 Java Applets and the Internetcooooeiiiii 8
1.4 A Short History of Java ..o 10
1.5 Common Misconceptions about Javacccccceceeeereinceevrceceenne 13
Chapter 2: The Java Programming Environmentcccccococmiiicnnncinnniennns 17
2.1 Installing the Java Development Kitcccccoviiiiiiiiiiiiiiiiinns 18
21.1 Downloading the JDKcccccoiiiiiiiiiiicciiicccccces 18

212 Setting up the JDKccoooiiiiiiiiiiceeeccceceeceeeeenenenes 20

2.1.3 Installing Source Files and Documentationccceceueeee 22

2.2 Using the Command-Line TOOoISccccccceiuiiiiiiiiiiiiiiccciicenes 23
2.3 Using an Integrated Development Environmentcccccoovvviinnnnes 26
24 Running a Graphical Application ..o, 30
2.5 Building and Running Applets ... 33

n Contents

Chapter 3: Fundamental Programming Structures in Javac.cccceeueeen. 41
3.1 A Simple Java Program ... 42
3.2 COMMENES ..cuoviniiiiiiiiiice e 46
3.3 Data TYPES ..cooovieiiiiiiieiiiece s 47

3.3.1 Integer TYPeS ...t 47
3.3.2 Floating-Point TYPescccceviiivininninininiiicccccceaes 48
333 The char TYPe coomoviiecii s 50
3.34 Unicode and the char Typeccovviviiiiiiniiiiice 51
3.3.5 The boolean TYPE ..coviiiuiiiiiiiieece s 52
3.4 Variables ... 53
3.4.1 Initializing Variables ... 54
342 Constants ... 55
3.5 OPErators ..ot 56
3.5.1 Mathematical Functions and Constantscccocoevviinnnnen 57
3.5.2 Conversions between Numeric Typescccoooeueierrieiiinnnnan. 59
353 €SS s 60
3.54 Combining Assignment with Operatorsccccooeoriieinne. 61
3.5.5 Increment and Decrement Operatorsccccoeeeveveinircnnncnnes 61
3.5.6 Relational and boolean Operatorsccccceveieueieiicicieiiiinine, 62
3.5.7 Bitwise Operators ... 63
3.5.8 Parentheses and Operator Hierarchyc.cccccoevenevinnncncnnee 64
3.5.9 Enumerated Types ... 65
3.6 SHANES oo s 65
3.6.1 SUDSLIINGS ..ocvvieieiiie 66
3.6.2 Concatenationccccecveoinioiniiciniiiieceeee e 66
3.6.3 Strings Are Immutableccccooooiiiiiiii 67
3.64 Testing Strings for Equalitycccocoviiinnnnii 68
3.6.5 Empty and Null Stringsccccceveeininnnnnnnnrceeeeeenes 69
3.6.6 Code Points and Code URitsccccevvvivivivniiniiiiiniiiiiins 70
3.6.7 The String API c..ooueoeieieeeeeeeeeeeeeeeee ettt 71
3.6.8 Reading the Online API Documentationc.ccoceveinnnneen 74
3.6.9 Building Stringscccccovviiiiininnniii 77
3.7 Input and OULPUL ...c.ccceuiuiiiiiiiiiiiicecceceeee e 78
3.71 Reading INput ..o 79

3.7.2 Formatting Outputccovviiiviiiniiiiiiie 82

Contents

3.7.3 File Input and Outputccoooiriiiiiiii 87

3.8 Control FIOWcovoiiiiiieiiiiiciiccccc e 89
3.8.1 BIOCK SCOPE ...ttt 89

3.82 Conditional Statementsccccccvvueueirnuereieneeeenreeeeennenes 90

3.8.3 LOOPS ettt 94

3.8.4 Determinate LOOPScccoeiviriiiiiiiiniiiiiiiccccncen 99

3.8.5 Multiple Selections—The switch Statementccccccooveueeee 103

3.8.6 Statements That Break Control FIowcccccccooiinn 106

3.9 Big NUMDETS ...cocuiiiiiiiiiiciiciicc e 108
310 ATTAYS woiveiiiieciet ettt s 111
3.10.1 The “for each” LOOP ...cccoviiiiiiiiiiiiiiccccccces 113
3.10.2 Array Initializers and Anonymous Arraysc.ccccceeeeeeune. 114
3.10.3 Array COPYING ..oooeueieiicieieiiccie s 114
3.10.4 Command-Line Parametersccccoooeviiiviiiiniccniniccnnnn 116
3.10.5 Array SOrtingccoceeiieieieiiicicice s 117
3.10.6 Multidimensional AITays ... 120
3.10.7 Ragged ATTAYS ...ccoriiiiiiiiiciciiirccceeeeee s 124
Chapter 4: Objects and Classescccvuremmrnrmsinsssinsmssiss s sansssennas 129
41 Introduction to Object-Oriented Programmingc.cccocoeeueininncnes 130
411 ClASSES oottt 131

412 ODJECES et 132

413 Identifying Classesc.ccocomriiiiimrieieiiicicecce e 133

414 Relationships between Classesccooveiiiiniciiinincncnnne. 133

42 Using Predefined Classescccooeuririnininininininiciececiece e 135
421 Objects and Object Variablescccoouiiiiiiniiniinininicnne. 136

422 The Localbate Class of the Java Libraryccccccooveiieiiinnnnnes 139

42.3 Mutator and Accessor Methodscccoviiiiiiiiinnn 141

4.3 Defining Your OWn CIaSSesccoeeiiriireiiininieciiiecceeeeeeenes 145
431 An Enployee ClasS ..ccovevvieieviiieeieeeeieee ettt 145

43.2 Use of Multiple Source Filescccoouiiiiininniiiicnnns 149

43.3 Dissecting the Employee Classcccooviviviiiniiiiininn 149

43.4 First Steps with Constructorscccoeviiiiiiiiiiiicnns 150

43.5 Implicit and Explicit Parameterscccoeevoieriecccnnencncncnes 152

4.3.6 Benefits of Encapsulation ..., 153

43.7 Class-Based Access Privilegescccooooiiiiiniiinicncnccncnes 156

Contents
4.3.8 Private Methodscccooeeiieiieiiieeeieeeeeceeeeeee e 156
4.3.9 Final Instance Fieldsccccooevevieieieieieieieeeeeeeeeeeens 157
4.4 Static Fields and Methodscccooieieiiieienieieeeeeceeee e 158
4471 Static FIeldsS .oooieieiecieieceeeceeece ettt 158
4,42 Static CONSEANTS ...ccveevervieieeeieiieeeie ettt e se e e s e eeseens 159
443 Static Methodscoeeeieiieiiieeieeeeeeeete e 160
444 Factory Methods ..o 161
445 The main Methodccoeovveieeiieiieeeeceeeeee e 161
45 Method Parameterscoceceeererierienierieieieteeeseeee e ssesens 164
4.6 Object CONSIUCHON ..ovovvviieieicicicicccc e 171
4.6.1 Overloadingcccooviiiiiiinininiiiii 172
4.6.2 Default Field Initializationcccccecveevevvecievenienisenesesresienns 172
4.6.3 The Constructor with No Argumentsccccooeveriiiiinnne. 173
464 Explicit Field Initializationc.ccccoevvvnnnnnnnnnnne 174
4.6.5 Parameter INAMESccccoceeveeriiiriienieeiienieeieesteesieeseesveesneeaee 175
4.6.6 Calling Another Constructorccccoovvvvnnnnnnnnncnnnes 176
4.6.7 Initialization BIOCKSccoevvevieieieieicieccieeee e 177
4.6.8 Object Destruction and the finalize Methodc.cccevveenne 181
4.7 Packages ...cccceeuiiiiiiiic e 182
47.1 Class Importation ... 183
472 Static IMPOrtsccocoovvieiiiiiiiiic 185
473 Addition of a Class into a Packagec.ccccocevervieiiiiinnnnes 185
474 Package SCOPE ..o 189
4.8 The Class Path ...ttt 190
48.1 Setting the Class Pathccccooooiiii 193
4.9 Documentation COMMENTESccceveieieriiriierieieneeieeeee et 194
49.1 Comment INSEIrtioNccoceeevvieieriieieneeeere et se e 194
492 Class COMIMENLScceeeveeieereeriereeieeeeeteeee e eresreeae e ereereeneens 195
49.3 Method COMMENLSccevverreieieieieteieeeeeeee et eresaens 195
494 Field COMMENTES ...oocviiieiiciieiieeeieeeeie et 196
495 General COMMENTScccevververierieieieieteeeieeeeeeeressessessessenens 196
49.6 Package and Overview Commentscocoeuereiririereininnnnen. 198
49.7 Comment EXtractioncccccceevieeviieiieeieciieeieeceeeee e ene e 198
4.10 Class Design Hintscccoovuiiiiiiiiiiieiicie e 200

Contents

Chapter 5: INheritance ... s e 203
5.1 Classes, Superclasses, and Subclassesccccevvvviiiiiiiiiiinnns 204
51.1 Defining Subclassesccoooiiiiiiiiiiiiiiicccces 204

512 Overriding Methodsccccooiiiiiiiiii 206

51.3 Subclass CONSIIUCLOLSccoceiviiiiiiiiiiie 207

514 Inheritance Hierarchies ... 212

5.1.5 Polymorphism ..o 213

51.6 Understanding Method Callscccccocoviiiiniininiiiinnes 214

5.1.7 Preventing Inheritance: Final Classes and Methods 217

51.8 CaStiNg ..ccoveiiiiiiciciec e 219

519 ADbstract Classes ... s 221
5.1.10 Protected ACCESS ... 227

5.2 Object: The Cosmic SUPEICIasscccoeueueuriruririiiciriririciceeeeeeeeeeeee 228
5221 The equals Methodccoooeeeiieieniiiieceeececeeee e 229

52.2 Equality Testing and Inheritancecccccooeiiiiiiinnnnes 231

52.3 The hashCode Method ..o 235

5.2.4 The toString Methodccccouieieoiiiiicieieceeeeeeeeee e 238

5.3 Generic Array Lists ... 244
5.3.1 Accessing Array List Elementsccccccooiiiiiin 247

53.2 Compatibility between Typed and Raw Array Lists 251

5.4 Object Wrappers and AutoboXingcooeeveieiinieiiiiniciciccie, 252
5.5 Methods with a Variable Number of Parametersccccceuvnunens 256
5.6 Enumeration Classes ... 258
5.7 RefleCtiON ..c.c.coeueieuiiiieiiiiieieieieieieieieieieieieete ettt 260
571 The (1ass Class ...ccccecirruereuiniriiiciiiririeccrrieeeeeeeree e 261

572 A Primer on Catching Exceptionsccccooeeinceccninncncecnee 263

5.7.3 Using Reflection to Analyze the Capabilities of Classes 265

574 Using Reflection to Analyze Objects at Runtime 271

5.7.5 Using Reflection to Write Generic Array Code 276

5.7.6 Invoking Arbitrary Methodscccccooiiiiiiinnininnes 279

5.8 Design Hints for Inheritancecccccooooiiiiiiiiiic 283
Chapter 6: Interfaces, Lambda Expressions, and Inner Classes 287
6.1 INterfaces ... 288

6.1.1 The Interface Concept ... 288

Contents

6.1.2 Properties of Interfacescccooooueueiriiniiiiniiice 295

6.1.3 Interfaces and Abstract Classesccccccceerueuecirvinicncrccnnee 297

6.1.4 Static Methodsccccooiiiiiiiiiiiiiicccs 298

6.1.5 Default Methodsccooveeininieiiininiciinecinecceseeeeens 298

6.1.6 Resolving Default Method Conflictscccovvriiirinirininnnn. 300

6.2 Examples of Interfacesccocovviviiiniininiiiiincccs 302
6.2.1 Interfaces and Callbackscccccoeeueurueuiueenniciccecccccennee 302

6.2.2 The Comparator INterfacecccceveeviereerieeiereeeeeeeeee e 305

6.2.3 Object ClONINgccccevueuiuiiiiiiriiiciciciireccceeeeeeeeeeees 306

6.3 Lambda EXPTeSSIONSccceoiiurieiiiiiicieicincicie e 314
6.3.1 Why Lambdas?ccccceiiiiiniiiiiiiicccccccceee 314

6.3.2 The Syntax of Lambda Expressionsccccccoeeueueueucrcrcennee 315

6.3.3 Functional Interfacescccoccoeoivinniiinnciiincciccccens 318

6.34 Method Referencescccccoeceeeiiiiiciiicieicciciccieeccccennee 319

6.3.5 Constructor Referencesccccoevviviiiiinviiiiiiiiicnns 321

6.3.6 Variable SCOPEccccevuiiiiiiiiririiiiiiiccccc s 322

6.3.7 Processing Lambda EXpressionsc.cccocoeveueiviicieiiiinnnnen. 324

6.3.8 More about Comparatorscceceeeeeueueieieceieieeccieeeenens 328

6.4 INNET CLASSESeovvieiiiieiete e 329
6.4.1 Use of an Inner Class to Access Object State 331

6.42 Special Syntax Rules for Inner Classesccccccceuvueueucucuennne 334

6.4.3 Are Inner Classes Useful? Actually Necessary? Secure? 335

6.44 Local INner Classesccccoccevrueueuieirnieniiriniecinsiereeeseeaeeeeas 339

6.45 Accessing Variables from Outer Methodsccccccceueueunene. 339

6.4.6 Anonymous Inner Classesc.cccooeeueiriiceieicicccicieicne, 342

6.4.7 Static Inner Classesccccceurururueueieuriricicicicieicceeeeeeeeneas 346

6.5 PIrOXIES ..ooooiviiiiiiiiiiiiiii 350
6.5.1 When to Use ProXi€sc.ccoeeueieireueerinniecinnnereieneeneeenens 350

6.5.2 Creating Proxy ODbjectscccooeeiiiiieiiiiiiiccicceecnnas 350

6.5.3 Properties of Proxy Classescccceeuriririvniiiiiiiiiiiiiiinininnns 355
Chapter 7: Exceptions, Assertions, and Loggingccceeeemrirererisamenssanens 357
7.1 Dealing with EITOTSccccccoviviviiiiiiiiiiiiiiiiiiccccces 358
711 The Classification of Exceptionsccccccovvvvvniiviiniinnnnn 359

712 Declaring Checked Exceptionsccccoevvviiiiiiiiiiniiiiniiinnns 361

71.3 How to Throw an EXceptionc.ccccccceeevniicciniiccennae 364

Contents

714 Creating Exception Classescccooeeueivicieieiniiccicieiiccn 365

7.2 Catching EXCEPHONS ..o 367
721 Catching an EXception ... 367

722 Catching Multiple EXceptionsccccovvvvivnvnnninnnnnnns 369

723 Rethrowing and Chaining Exceptionsccccccooeeirininnnnee. 370

724 The finally Clauseccceeeevieerieiieieieeeecteeeere et 372

725 The Try-with-Resources Statementcccccocevuvurererirerrennnne 376

7.2.6 Analyzing Stack Trace Elementsccccoooiiiiiriiinnnn 377

7.3 Tips for Using EXCEPIONScccvuviviviiiiiririiiiiiiiirinceceeeceeae 381
7.4 USING ASSEItIONS ...ovviiiiiiiiti e 384
74.1 The Assertion CONCepPtcccovvviviviiiiiiiiiiiiiininiiins 384

742 Assertion Enabling and Disablingc.ccccceevvvviiinnnnne 385

743 Using Assertions for Parameter Checkingccccccceeenee 386

744 Using Assertions for Documenting Assumptions 387

7.5 LOZZING oottt 389
7.5.1 Basic LOZZINGcccovrririiiiiiiiiiiiccc 389

752 Advanced LOGZINGccccovvriririrrrirrrreeceeeeeeeeeeeeeae 390

753 Changing the Log Manager Configurationccccc...... 392

754 Localization ..o 393

755 Handlers ... 394

7.5.6 FAIEEIS ..ooviuiiiiiiiiicciecce et 398

7.5.7 FOrmatters ... 399

7.5.8 A Logging ReCipe ..ot 399

7.6 Debugging TiPscccocovvririrririrriirreree e 409
Chapter 8: Generic Programmingcccuceesrssmsmsssmsmsssssssssssssssssssssasssssasss 415
8.1 Why Generic Programming?ccoooeuoiniiiiiiiciineec 416
8.1.1 The Advantage of Type Parameterscccccevvririririrrinnnnne 416

8.1.2 Who Wants to Be a Generic Programmer?cccccceeueenee 417

8.2 Defining a Simple Generic Classccccoovrueieiiiiniciiiiccecc 418
8.3 Generic Methodsccccvieieuiiiriiciincceccre e 421
8.4 Bounds for Type Variablescccccocoiiirrriiciiciiceeeeeeeeeeeae 422
8.5 Generic Code and the Virtual Machineccccocovvniniinnnnnnn. 425
8.5.1 Type Erasure ... 425

8.5.2 Translating Generic EXpressionsccccocoeeueiirieieiiincnnnn 426

8.5.3 Translating Generic Methodsccccccoooviiiini 427

Contents
8.5.4 Calling Legacy Codeccccoovimiiiiiiiiciciicceecc e 429
8.6 Restrictions and Limitationsccccceveveeeinnrereinnnieceennerecneneeneneees 430
8.6.1 Type Parameters Cannot Be Instantiated with Primitive

TYPOS e 430
8.6.2 Runtime Type Inquiry Only Works with Raw Types 431
8.6.3 You Cannot Create Arrays of Parameterized Types 431
8.6.4 Varargs Warningsccccceceeeveinininiiinnnieccnecccceencecns 432
8.6.5 You Cannot Instantiate Type Variablesccccccccceeennne. 433
8.6.6 You Cannot Construct a Generic Arrayc.cococoeueveienrunen. 434

8.6.7 Type Variables Are Not Valid in Static Contexts of Generic
CLASSES .eevevvinerereriireteietrerte ettt 436
8.6.8 You Cannot Throw or Catch Instances of a Generic Class ... 436
8.6.9 You Can Defeat Checked Exception Checking 437
8.6.10 Beware of Clashes after Erasurecccoeeceenrercinnenccecnnns 439
8.7 Inheritance Rules for Generic Typescccoeeieiiiniiiiiiiciciiccice, 440
8.8 WIldcard TYPES ...cccvuvururiiiiiiiiiricicicicicceceee e 442
8.8.1 The Wildcard Concept ..o 442
8.8.2 Supertype Bounds for Wildcardsc.ccoooeeeiniiinnnnnnnn. 444
8.8.3 Unbounded Wildcardsccoceceeerrerecrmnnercrnnereinnenercenens 447
8.8.4 Wildcard Capture ..o 448
8.9 Reflection and GENETICSc.ceeerureereueirerrereirinrereiireereeeresreeeeseeneneaes 450
8.9.1 The Generic (1355 Classc..ccveveruerurrerieeneerinieeneeneeenreenneeenes 450
8.9.2 Using (lass<T> Parameters for Type Matchingc....... 452
8.9.3 Generic Type Information in the Virtual Machine 452
Chapter 9: ColleCtionscccocciiicerinsnrnss s s 459
9.1 The Java Collections Frameworkccccccevriririenenenenenenenenenes 460
9.1.1 Separating Collection Interfaces and Implementation 460
9.1.2 The Collection INtErfacecocececevvvevevereniriericnireccrnieecreneeenenes 463
9.1.3 THETALOTS weoveeeiiiiiiieieeeececcecetete et 463
9.14 Generic Utility Methodsccoovvinnnnnnneeccne 466
9.1.5 Interfaces in the Collections Frameworkc.cccccccceveennencnn 469
9.2 Concrete COLLECIONSc.cueeerevreuerieinreieieirireeieeereeereeeere et nene 472
9.2.1 Linked LiSts ..cccoeoireiriiiiieiceiccrctneteceeeee e 474
9.22 Array Lists ..o 484

0.2.3 HASK SIS weoieeeiieiiceeeeee e 485

Contents

924 Tree Sets ..o 489

925 Queues and DeqUES ... 494

9.2.6 Priority QUEUEScccvovieriiiicciec s 495

9.3 MAPS s 497
9.3.1 Basic Map Operationscccccocoeveimiviiiiiniiiniiccnes 497

9.3.2 Updating Map Entriescccccoviiiiiiinncc 500

9.33 Map VIEWS ..ot 502

9.34 Weak Hash Mapscccccoceuiiiiriciiiiiccecc 504

9.3.5 Linked Hash Sets and Mapsccccccoceiiiiiininccniincnccnnes 504

9.3.6 Enumeration Sets and Mapsccccooeueeiiiieiiiniicic 506

9.3.7 Identity Hash Mapscccccooeiiiiiiiiiiiicccccccccicnes 507

9.4 Views and WIAPPETScccccceurueueururiririiieicieeeieieieeeeeeeeeeeeaeeeeeeeaeseeeeseenenas 509
9.41 Lightweight Collection Wrapperscccocoeueiveccieiiircnnne. 509

9.4.2 SUDIANGES ...ccimimimimiiiiiiiiicccrccc s 510

9.43 Unmodifiable VIEWSccccccviiviiiiiiiicniccis 511

9.44 Synchronized VIEWScccoiiiiiiiiiiiiciicccccces 512

9.45 Checked VIEWS ..o 513

9.4.6 A Note on Optional Operationscccoeeviviviinciniiinnnnnne 514

9.5 AIZOTItRINS ..oviiiiiiicccc e 517
9.5.1 Sorting and Shuffling ..o 518

9.5.2 Binary Search ... 521

9.53 Simple AlgOrithmscccooiiiiiiiiii 522

9.54 Bulk Operations ..o 524

9.5.5 Converting between Collections and Arraysc.c.cceeeeuee. 525

9.5.6 Writing Your Own Algorithmsccccoooiiii 526

9.6 Legacy COlECtIONScceuruririiiiiiiiiriiciciciereceeeeeeeee e 528
9.6.1 The Hashtable Class ... 528

9.6.2 ENUMETAtioNSccovveuivieiiiiiniiiricicceeeeeee s 528

9.6.3 Property Mapsccccocoeeininieieinieiiccee 530

9.6.4 STACKS ..eiiiiiiic s 531

9.6.5 Bit Sets ..c.cvviuiiiiiii 532
Chapter 10: Graphics Programmingccccuceemisssmnsmsmsssmsssssssssssasssssanns 537
10.1 Introducing SWinNgccoceeieiiiiiciiicce s 538
10.2 Creating a Framecocoooeiiiiiiiiiic e 543

10.3 Positioning a Framecccccooeiiviiiiiniiiiiccccccne 546

Contents
10.3.1 Frame Properties ... 549
10.3.2 Determining a Good Frame Sizeccocoeiiiiiiiinncnnne. 549
10.4 Displaying Information in a Componentcccooeeeiiireiiininnne. 554
10.5 Working with 2D Shapes ..., 560
10.6 USING COLOT ...oovmiiiiiiiiiciiiiiciccicicccce e 569
10.7 Using Special Fonts for Textccccoeoiiiiiiiiiiice 573
10.8 Displaying IMages ... 582
Chapter 11: Event Handlingcccciiiimmminiimnninseessnnssemsn s sssnsnnns 587
11.1 Basics of Event Handling ... 587
11.1.1 Example: Handling a Button Click ..o, 591
11.1.2 Specifying Listeners CONciselycccouviiiiiiiiiicnnnne. 595
11.1.3 Example: Changing the Look-and-Feelccccccccvurrnncee. 598
11.1.4 Adapter Classesccocooimmieiiiicieieieiccieeeec i 603
11,2 ACHONS .ooviiiiciciiccc s 607
11.3° Mouse EVENtS ...ttt 616
11.4 The AWT Event Hierarchy ..o, 624
11.4.1 Semantic and Low-Level Eventsccccoeoiiiiciiinncnnne. 626
Chapter 12: User Interface Components with Swingccccceeriinrncanen 629
12.1 Swing and the Model-View-Controller Design Pattern 630
12.1.1 Design Patterns ... 630
12.1.2 The Model-View-Controller Patternccccocoeeciiiincncnee 632
12.1.3 A Model-View-Controller Analysis of Swing Buttons 636
12.2 Introduction to Layout Managementcccccccoeiiiiiiiiinicncnne. 638
1221 Border Layoutococeueioiiiieiiiiiiieec 641
12.2.2 Grid Layout ... 644
123 Text INPUL oo 648
12.3.1 Text Fields ... 649
12.3.2 Labels and Labeling Componentscccccooveieiirncncnne 651
12.3.3 Password Fields ..o, 652
12.3.4 TeXt ATAS ..ccorveuiiiiiiiiiieciiceecee e 653
12.3.5 Scroll Panes ..o 654
12.4 Choice COMPONENLSc.cuvvimimimiiiiiiiiiiiiiiices 657
1241 ChecKDOXES ...t 657

12.4.2 Radio BULONS ...eveiieeiiiieeeeeeeee e 660

Contents

12.6

12.7

12.8

12.4.3 BOTAEIS ..oooviiieiieeeteeeeeteettet ettt 664
12,44 COMDO BOXES ..oovvevienieiienieiieiieieiieieesie sttt seees 668
12.4.5 SHAETS wouveviieiiieiieieeeeeetete ettt sttt sttt eesens 672
IMLEITUS ..vviietiieiieette ettt et te et e e ae e bt e s te e ve e st e e saessseenbaesssaenseesnsansnennns 678
12.5.1 Menu Buildingcccooeveiiieiiiiiec e 679
12.5.2 Iconsin Menu Itemscccveeeiienieeiiienieceecee e 682
12.5.3 Checkbox and Radio Button Menu Itemsccceeveeveneeneee. 683
1254 Pop-Up Menus ... 684
12.5.5 Keyboard Mnemonics and Acceleratorscccccccueueunneee 686
12.5.6 Enabling and Disabling Menu Itemsccccoovoiiiiiiinnnne, 689
12.5.7 TOOIDATS ...cuvieieieeiieieeeeteeeteeee ettt ettt e beeanens 694
12.5.8 TOOIPS -.evvvmmicmiicicicicicieeieeieeice e nenene 696
Sophisticated Layout Managementccooeeioiiiiiininicceicccnn 699
12.6.1 The Grid Bag Layout ... 701
12.6.1.1 The gridx, gridy, gridwidth, and gridheight Parameters ... 703
12.6.1.2 Weight Fields ... 703
12.6.1.3 The i1l and anchor Parametersccceevevvevevennenens 704
12.6.1.4 Paddingcccccovveviierriniicieriiiccceeece s 704
12.6.1.5 Alternative Method to Specify the gridx, gridy,
gridwidth, and gridheight Parameterscccoveeveevvennnne 705
12.6.1.6 A Helper Class to Tame the Grid Bag
CONSETAINES ...oveeeveiieeieeiiereeeete et 706
12.6.2 Group Layout ..o 713
12.6.3 Using No Layout Managercccceoeeeeieinnnnnnininnnninnns 723
12.6.4 Custom Layout Managers ... 724
12.6.5 Traversal Orderccccevieieieieieeseeieeesie et ees 729
Dialog BOXESc.cuviiiiiiiicicie s 730
12.7.1 Option Dialogsccccceuimimimiuiiiiiiiecieiccceeeeeeeeieece e 731
12.7.2 Creating Dialogscccoouiumieiiiiiiiciiccic 741
12.7.3 Data EXChangeccccccoveiiiiiiiiiiiiiiccciccccccicccceens 746
12.7.4 File Dialogscccovvevrveiiieiiieiieie s 752
12.7.5 COlOr ChOOSETSccveeevirienrierietieteeete ettt veenens 764
Troubleshooting GUI Programs ... 770
12.8.1 Debugging Tipscccccoeoieimieiiiiicieieieiccie e 770

12.8.2 Letting the AWT Robot Do the Workcccccccciiiiinnn 774

m Contents

Chapter 13: Deploying Java Applicationsccccceriimninsemnsnssssscmsnnsanens 779
13.1 JAR FIES .oviiiiiiiii s 780
13.1.1 Creating JAR files ... 780
13.1.2 The Manifest ... 781
13.1.3 Executable JAR FileScccooevieieieieieieiceeeee e 782
13.1.4 RESOUICES ...ouvoviniiiniiiiitiicicieere e 783
13.1.5 S€aliNG ...ouvviiiciii 787

13.2 Storage of Application Preferences ..., 788
13.2.1 Property Maps ..ot 788
13.2.2 The Preferences API ... 794

13.3 Service LOAders ... 800
134 APPLEtS oo s 802
1341 A Simple Applet ..o 803
13.4.2 The applet HTML Tag and Its Attributescccoeviinnnnnn. 808
13.4.3 Use of Parameters to Pass Information to Applets 810
13.4.4 Accessing Image and Audio Filesccoooiiiiiiiinncnnne. 816
13.4.5 The Applet Context ..o, 818
13.4.6 Inter-Applet Communicationcccccceceeiiiccciicncncnnn. 818
13.4.7 Displaying Items in the Browserccccoooiiiiii, 819
13.4.8 The SandboXccccvveuiirinieieiirieeieeeee e 820
13.4.9 Signed Code ..o 822

13.5 Java WED SEart ...ccoooieieieieieieeeeeee ettt s 824
13.5.1 Delivering a Java Web Start Applicationcccccocvreennnee. 824
13.5.2 The JNLP APIccooiiiiiiiiiiiiiccccccccee e 829
Chapter 14: CONCUITENCYccccorrnrmrisssmsmsssmsssssssssssasssssssssssasssssssssasmssnsanes 839
14.1 What Are Threads? ... 840
14.1.1 Using Threads to Give Other Tasks a Chance 846

14.2 Interrupting Threads ... 851
14.3 Thread Statesccccecvererieiririereiireccee et 855
14.3.1 New Threads ..o 855
14.3.2 Runnable Threads ..o 855
14.3.3 Blocked and Waiting Threads ..o 856
14.3.4 Terminated Threads ..., 857

14.4 Thread Properties ... 858

14.4.1 Thread Prioriti€Scccociiiiiieieiiieiiieeeeieeeeieeeeereeeeeveeeeeeeeans 858

Contents

14.5

14.6
14.7

14.8
14.9

14.4.2 Daemon Threadscccocevveeieeiieieniieeeeceee e 859
14.4.3 Handlers for Uncaught Exceptionsccccccocccuiciiccnnee 860
Synchronization ..o 862
1451 An Example of a Race Conditioncccccceeieiiiiincnnne 862
14.5.2 The Race Condition Explainedcccoovveiiiiiiininnnnnnen. 866
14.5.3 Lock ObJectsccoiuiiiiiiiiiiiiiiiiiicicccicc s 868
14.5.4 Condition ODbJECEScceuimimimiuiuiuicmieiieicceeeeeceee e 872
14.5.5 The synchronized Keywordccooemiiiiiiiiii, 878
14.5.6 Synchronized BIOCKSc.cccccoiiiiiiiiiiiiiiicccccccee, 882
14.5.7 The Monitor Conceptccoeuevimeieiniiiieieiecee e, 884
14.5.8 Volatile FIieldsccoeevieirieiicrieiicieeeeteee e 885
14.5.9 Final Variablescccccoceieieieieineneseeesie et 886
14.5.10 ALOIMICS .eviverieiieeeieeieeereeitteeteesteesteesaeessaessseesseesnseessaesnsessssessenns 886
14.5.11 DeadlOoCKS ..ccveoveverienieieiieiieiieieieeieestessessessessessessesessessessessessenes 889
14.5.12 Thread-Local Variablesccccccevieviinieieneeieseeieseeeeeenns 892
14.5.13 Lock Testing and Timeoutsc.ccccceeecuicicccciciiieennen. 893
14.5.14 Read/Write LOCKS ...oooiiviiiiiiiiiiceeeeeeee et 895
14.5.15 Why the stop and suspend Methods Are Deprecated 896
Blocking QUEUEScciuiuimimiiiiiiiccitecccc e 898
Thread-Safe COlleCHONSccccvevveveieierieereiereeeee et e s eenens 905
14.7.1 Efficient Maps, Sets, and Queuesccccccoeeeiciiiienennen 905
14.7.2 Atomic Update of Map Entriesccooevvviiviniiniiiicnns 907
14.7.3 Bulk Operations on Concurrent Hash Mapsc.......... 909
14.7.4 Concurrent Set VIEWSccocveeiieienieiereeereeeeseeeseee e 912
14.7.5 Copy on Write AITaysccocooimeieiiiiriceiiceie e 912
14.7.6 Parallel Array Algorithmsccccccooiiiiiiiiiiiiiccenee 912
14.7.7 Older Thread-Safe ColleCtionsccecevueereeereeeriererieerieienens 914
Callables and FULULESccvecvieiieiiciieeeeeeee e 915
EXECULOTS ..ottt ettt st 920
14.9.1 Thread POOISccecueeiieiieieeeeteeeee e 921
14.9.2 Scheduled EX@CUHIONcccocvririeeieiriisiieieriesieieieieeee e 926
14.9.3 Controlling Groups of Taskscccccoueuvirinininininiciiciene 927
14.9.4 The Fork-Join Frameworkcccccoceverenenenienieeeeeeceene, 928
14.9.5 Completable FULUIEScccccociuiiiiiiiiiicccccccceeeceeenens 931

14.10 SYNChIONIZETS ..ot 934

Contents
14.10.1 SemaphOTescccoioiueieiiiiiicieieece e 935
14.10.2 Countdown Latchescccccoevviiiiiiiiiiiccas 936
14.10.3 BaITIETS ..oovevieieiiictcniiictcnceeet s 936
14.10.4 EXChANGETScccooimimimiiiiiiiiiiicccccc e 937
14.10.5 Synchronous QUEUESccccovimieieiiiiciciiice 937
14.11 Threads and SWING ... 937
14.11.1 Running Time-Consuming Tasksccccccoeouiivccicinnccnne 939
14.11.2 Using the Swing Worker ..o, 943
14.11.3 The Single-Thread Ruleccccooiiiiiiiiiiiiiiiiicne, 951
VY o] o =14 o GRS IPPPPR 953
INABX e 957

Preface

To the Reader

In late 1995, the Java programming language burst onto the Internet scene and
gained instant celebrity status. The promise of Java technology was that it would
become the universal glue that connects users with information wherever it comes
from—web servers, databases, information providers, or any other imaginable
source. Indeed, Java is in a unique position to fulfill this promise. It is an extremely
solidly engineered language that has gained wide acceptance. Its built-in security
and safety features are reassuring both to programmers and to the users of Java
programs. Java has built-in support for advanced programming tasks, such as
network programming, database connectivity, and concurrency.

Since 1995, nine major revisions of the Java Development Kit have been released.
Over the course of the last 20 years, the Application Programming Interface (API)
has grown from about 200 to over 4,000 classes. The API now spans such diverse
areas as user interface construction, database management, internationalization,
security, and XML processing.

The book you have in your hands is the first volume of the tenth edition of Core
Java®. Each edition closely followed a release of the Java Development Kit, and
each time, we rewrote the book to take advantage of the newest Java features.
This edition has been updated to reflect the features of Java Standard Edition
(SE) 8.

As with the previous editions of this book, we still target serious programmers who
want to put Java to work on real projects. We think of you, our reader, as a program-
mer with a solid background in a programming language other than Java, and
we assume that you don’t like books filled with toy examples (such as toasters,
zoo animals, or “nervous text”). You won't find any of these in our book. Our
goal is to enable you to fully understand the Java language and library, not to
give you an illusion of understanding.

In this book you will find lots of sample code demonstrating almost every language
and library feature that we discuss. We keep the sample programs purposefully
simple to focus on the major points, but, for the most part, they aren’t fake and
they don’t cut corners. They should make good starting points for your own code.

Xix

Preface

We assume you are willing, even eager, to learn about all the advanced features
that Java puts at your disposal. For example, we give you a detailed treatment of

* Object-oriented programming

* Reflection and proxies

¢ Interfaces and inner classes

¢ Exception handling

¢ Generic programming

¢ The collections framework

¢ The event listener model

* Graphical user interface design with the Swing UI toolkit

¢ Concurrency

With the explosive growth of the Java class library, a one-volume treatment of
all the features of Java that serious programmers need to know is no longer pos-
sible. Hence, we decided to break up the book into two volumes. The first volume,
which you hold in your hands, concentrates on the fundamental concepts of the
Java language, along with the basics of user-interface programming. The second
volume, Core Java®, Volume II—Advanced Features, goes further into the enterprise

features and advanced user-interface programming. It includes detailed discus-
sions of

¢ The Stream API

¢ File processing and regular expressions

¢ Databases

e XML processing

* Annotations

* Internationalization

* Network programming

* Advanced GUI components

* Advanced graphics

¢ Native methods

When writing a book, errors and inaccuracies are inevitable. We’d very much
like to know about them. But, of course, we’d prefer to learn about each of them
only once. We have put up a list of frequently asked questions, bug fixes, and
workarounds on a web page at http://horstmann.con/corejava. Strategically placed at
the end of the errata page (to encourage you to read through it first) is a form you

can use to report bugs and suggest improvements. Please don’t be disappointed
if we don’t answer every query or don’t get back to you immediately. We do read

http://horstmann.com/corejava

Preface

all e-mail and appreciate your input to make future editions of this book clearer
and more informative.

A Tour of This Book

Chapter 1 gives an overview of the capabilities of Java that set it apart from other
programming languages. We explain what the designers of the language set out
to do and to what extent they succeeded. Then, we give a short history of how
Java came into being and how it has evolved.

In Chapter 2, we tell you how to download and install the JDK and the program
examples for this book. Then we guide you through compiling and running three
typical Java programs—a console application, a graphical application, and an
applet—using the plain JDK, a Java-enabled text editor, and a Java IDE.

Chapter 3 starts the discussion of the Java language. In this chapter, we cover the
basics: variables, loops, and simple functions. If you are a C or C++ programmer,
this is smooth sailing because the syntax for these language features is essentially
the same as in C. If you come from a non-C background such as Visual Basic, you
will want to read this chapter carefully.

Object-oriented programming (OOP) is now in the mainstream of programming
practice, and Java is an object-oriented programming language. Chapter 4 intro-
duces encapsulation, the first of two fundamental building blocks of object orien-
tation, and the Java language mechanism to implement it—that is, classes and
methods. In addition to the rules of the Java language, we also give advice on
sound OOP design. Finally, we cover the marvelous javadoc tool that formats your
code comments as a set of hyperlinked web pages. If you are familiar with C++,
you can browse through this chapter quickly. Programmers coming from a non-
object-oriented background should expect to spend some time mastering the OOP
concepts before going further with Java.

Classes and encapsulation are only one part of the OOP story, and Chapter 5 in-
troduces the other—namely, inheritance. Inheritance lets you take an existing class
and modify it according to your needs. This is a fundamental technique for pro-
gramming in Java. The inheritance mechanism in Java is quite similar to that in
C++. Once again, C++ programmers can focus on the differences between the
languages.

Chapter 6 shows you how to use Java’s notion of an interface. Interfaces let you
go beyond the simple inheritance model of Chapter 5. Mastering interfaces allows
you to have full access to the power of Java’s completely object-oriented approach
to programming. After we cover interfaces, we move on to lambda expressions, a

Preface

concise way for expressing a block of code that can be executed at a later point
in time. We then cover a useful technical feature of Java called inner classes.

Chapter 7 discusses exception handling—]Java’s robust mechanism to deal with the
fact that bad things can happen to good programs. Exceptions give you an efficient
way of separating the normal processing code from the error handling. Of course,
even after hardening your program by handling all exceptional conditions, it still
might fail to work as expected. In the final part of this chapter, we give you a
number of useful debugging tips.

Chapter 8 gives an overview of generic programming. Generic programming
makes your programs easier to read and safer. We show you how to use strong
typing and remove unsightly and unsafe casts, and how to deal with the complex-
ities that arise from the need to stay compatible with older versions of Java.

The topic of Chapter 9 is the collections framework of the Java platform. When-
ever you want to collect multiple objects and retrieve them later, you should use
a collection that is best suited for your circumstances, instead of just tossing the
elements into an array. This chapter shows you how to take advantage of
the standard collections that are prebuilt for your use.

Chapter 10 starts the coverage of GUI programming. We show how you can make
windows, how to paint on them, how to draw with geometric shapes, how to
format text in multiple fonts, and how to display images.

Chapter 11 is a detailed discussion of the event model of the AWT, the abstract
window toolkit. You’'ll see how to write code that responds to events, such as mouse
clicks or key presses. Along the way you'll see how to handle basic GUI elements
such as buttons and panels.

Chapter 12 discusses the Swing GUI toolkit in great detail. The Swing toolkit al-
lows you to build cross-platform graphical user interfaces. You'll learn all about
the various kinds of buttons, text components, borders, sliders, list boxes, menus,
and dialog boxes. However, some of the more advanced components are discussed
in Volume II.

Chapter 13 shows you how to deploy your programs, either as applications or
applets. We describe how to package programs in JAR files, and how to deliver
applications over the Internet with the Java Web Start and applet mechanisms.
We also explain how Java programs can store and retrieve configuration
information once they have been deployed.

Chapter 14 finishes the book with a discussion of concurrency, which enables
you to program tasks to be done in parallel. This is an important and exciting

Preface

application of Java technology in an era where most processors have multiple
cores that you want to keep busy.

The Appendix lists the reserved words of the Java language.

Conventions

As is common in many computer books, we use monospace type to represent
computer code.

NOTE: Notes are tagged with “note” icons that look like this.

6 TIP: Tips are tagged with “tip” icons that look like this.

0 CAUTION: When there is danger ahead, we warn you with a “caution” icon.

C++ NOTE: There are many C++ notes that explain the differences between

@ Java and C++. You can skip over them if you don't have a background in C++
or if you consider your experience with that language a bad dream of which
you'd rather not be reminded.

Java comes with a large programming library, or Application Programming In-
terface (API). When using an API call for the first time, we add a short summary
description at the end of the section. These descriptions are a bit more informal
but, we hope, also a little more informative than those in the official online API
documentation. The names of interfaces are in italics, just like in the official doc-
umentation. The number after a class, interface, or method name is the JDK version
in which the feature was introduced, as shown in the following example:

Application Programming Interface

Preface

Programs whose source code is on the book’s companion web site are presented
as listings, for instance:

Listing 1.1 InputTest/InputTest.java

Sample Code

The web site for this book at http://horstmann.com/corejava contains all sample code
from the book, in compressed form. You can expand the file either with one of
the familiar unzipping programs or simply with the jar utility that is part of the
Java Development Kit. See Chapter 2 for more information on installing
the Java Development Kit and the sample code.

http://horstmann.com/corejava

Acknowledgments

Writing a book is always a monumental effort, and rewriting it doesn’t seem to
be much easier, especially with the continuous change in Java technology. Making
a book a reality takes many dedicated people, and it is my great pleasure to
acknowledge the contributions of the entire Core Java team.

A large number of individuals at Prentice Hall provided valuable assistance but
managed to stay behind the scenes. I'd like them all to know how much I appre-
ciate their efforts. As always, my warm thanks go to my editor, Greg Doench, for
steering the book through the writing and production process, and for allowing
me to be blissfully unaware of the existence of all those folks behind the scenes.
Iam very grateful to Julie Nahil for production support, and to Dmitry Kirsanov
and Alina Kirsanova for copyediting and typesetting the manuscript. My thanks
also to my coauthor of earlier editions, Gary Cornell, who has since moved on to
other ventures.

Thanks to the many readers of earlier editions who reported embarrassing errors
and made lots of thoughtful suggestions for improvement. I am particularly
grateful to the excellent reviewing team who went over the manuscript with an
amazing eye for detail and saved me from many embarrassing errors.

Reviewers of this and earlier editions include Chuck Allison (Utah Valley Univer-
sity), Lance Andersen (Oracle), Paul Anderson (Anderson Software Group), Alec
Beaton (IBM), Cliff Berg, Andrew Binstock (Oracle), Joshua Bloch, David Brown,
Corky Cartwright, Frank Cohen (PushToTest), Chris Crane (devXsolution),
Dr. Nicholas J. De Lillo (Manhattan College), Rakesh Dhoopar (Oracle), David
Geary (Clarity Training), Jim Gish (Oracle), Brian Goetz (Oracle), Angela Gordon,
Dan Gordon (Electric Cloud), Rob Gordon, John Gray (University of Hartford),
Cameron Gregory (olabs.com), Marty Hall (coreservlets.com, Inc.), Vincent Hardy
(Adobe Systems), Dan Harkey (San Jose State University), William Higgins (IBM),
Vladimir Ivanovic (PointBase), Jerry Jackson (CA Technologies), Tim Kimmet
(Walmart), Chris Laffra, Charlie Lai (Apple), Angelika Langer, Doug Langston,
Hang Lau (McGill University), Mark Lawrence, Doug Lea (SUNY Oswego),
Gregory Longshore, Bob Lynch (Lynch Associates), Philip Milne (consultant),
Mark Morrissey (The Oregon Graduate Institute), Mahesh Neelakanta (Florida
Atlantic University), Hao Pham, Paul Philion, Blake Ragsdell, Stuart Reges
(University of Arizona), Rich Rosen (Interactive Data Corporation), Peter Sanders
(ESSI University, Nice, France), Dr. Paul Sanghera (San Jose State University and

XXV

Acknowledgments

Brooks College), Paul Sevinc (Teamup AG), Devang Shah (Sun Microsystems),
Yoshiki Shibata, Bradley A. Smith, Steven Stelting (Oracle), Christopher Taylor,
Luke Taylor (Valtech), George Thiruvathukal, Kim Topley (StreamingEdge), Janet
Traub, Paul Tyma (consultant), Peter van der Linden, Christian Ullenboom, Burt
Walsh, Dan Xu (Oracle), and John Zavgren (Oracle).

Cay Horstmann
Biel/Bienne, Switzerland
November 2015

CHAPTER

An Introduction to Java

In this chapter

* 1.1 Java as a Programming Platform, page 1

* 1.2 The Java ‘White Paper’ Buzzwords, page 2
* 1.3 Java Applets and the Internet, page 8

* 1.4 A Short History of Java, page 10

* 15 Common Misconceptions about Java, page 13

The first release of Java in 1996 generated an incredible amount of excitement,
not just in the computer press, but in mainstream media such as the New York
Times, the Washington Post, and BusinessWeek. Java has the distinction of being
the first and only programming language that had a ten-minute story on National
Public Radio. A $100,000,000 venture capital fund was set up solely for products
using a specific computer language. I hope you will enjoy the brief history of Java
that you will find in this chapter.

1.1 Java as a Programming Platform

In the first edition of this book, my coauthor Gary Cornell and I had this to write
about Java:

“As a computer language, Java’s hype is overdone: Java is certainly a good pro-
gramming language. There is no doubt that it is one of the better languages

Chapter 1 m An Introduction to Java

available to serious programmers. We think it could potentially have been a great
programming language, but it is probably too late for that. Once a language is
out in the field, the ugly reality of compatibility with existing code sets in.”

Our editor got a lot of flack for this paragraph from someone very high up at Sun
Microsystems, the company that originally developed Java. The Java language
has a lot of nice features that we will examine in detail later in this chapter. It has
its share of warts, and some of the newer additions to the language are not as
elegant as the original features because of the ugly reality of compatibility.

But, as we already said in the first edition, Java was never just a language. There
are lots of programming languages out there, but few of them make much of a
splash. Java is a whole platform, with a huge library, containing lots of reusable
code, and an execution environment that provides services such as security,
portability across operating systems, and automatic garbage collection.

As a programmer, you will want a language with a pleasant syntax and compre-
hensible semantics (i.e., not C++). Java fits the bill, as do dozens of other fine
languages. Some languages give you portability, garbage collection, and the like,
but they don’t have much of a library, forcing you to roll your own if you want
fancy graphics or networking or database access. Well, Java has everything—a
good language, a high-quality execution environment, and a vast library.
That combination is what makes Java an irresistible proposition to so many
programmers.

1.2 The Java “White Paper” Buzzwords

The authors of Java wrote an influential white paper that explains their design
goals and accomplishments. They also published a shorter overview that is
organized along the following 11 buzzwords:

Simple
Object-Oriented
Distributed

Robust

Secure
Architecture-Neutral
Portable

Interpreted

e AT L e

High-Performance

1.2 The Java “White Paper” Buzzwords n

10. Multithreaded
11. Dynamic
In this section, you will find a summary, with excerpts from the white paper, of

what the Java designers say about each buzzword, together with a commentary
based on my experiences with the current version of Java.

D NOTE: The white paper can be found at www.oracle.com/technetwork/java/
é Tangenv-140151.html. You can retrieve the overview with the 11 buzzwords at
http://horstmann.com/corejava/java-an-overview/7Gos1ing. pdf.

1.2.1 Simple

We wanted to build a system that could be programmed easily without a lot of eso-
teric training and which leveraged today’s standard practice. So even though we
found that C++ was unsuitable, we designed Java as closely to C++ as possible in
order to make the system more comprehensible. Java omits many rarely used,
poorly understood, confusing features of C++ that, in our experience, bring more
grief than benefit.

The syntax for Java is, indeed, a cleaned-up version of C++ syntax. There is no
need for header files, pointer arithmetic (or even a pointer syntax), structures,
unions, operator overloading, virtual base classes, and so on. (See the C++ notes
interspersed throughout the text for more on the differences between Java and
C++.) The designers did not, however, attempt to fix all of the clumsy features
of C++. For example, the syntax of the switch statement is unchanged in Java. If
you know C++, you will find the transition to the Java syntax easy.

At the time that Java was released, C++ was actually not the most commonly
used programming language. Many developers used Visual Basic and its drag-
and-drop programming environment. These developers did not find Java
simple. It took several years for Java development environments to catch up.
Nowadays, Java development environments are far ahead of those for most other
programming languages.

Another aspect of being simple is being small. One of the goals of Java is to enable
the construction of software that can run stand-alone on small machines. The size
of the basic interpreter and class support is about 40K; the basic standard libraries
and thread support (essentially a self-contained microkernel) add another 175K.

This was a great achievement at the time. Of course, the library has since grown
to huge proportions. There is now a separate Java Micro Edition with a smaller
library, suitable for embedded devices.

http://www.oracle.com/technetwork/java/
http://horstmann.com/corejava/java-an-overview/7Gosling.pdf

Chapter 1 m An Introduction to Java

1.2.2 Object-Oriented

Simply stated, object-oriented design is a programming technique that focuses on
the data (= objects) and on the interfaces to that object. To make an analogy with
carpentry, an “object-oriented” carpenter would be mostly concerned with the chair
he is building, and secondarily with the tools used to make it; a “non-object-oriented”
carpenter would think primarily of his tools. The object-oriented facilities of Java
are essentially those of C++.

Object orientation was pretty well established when Java was developed.
The object-oriented features of Java are comparable to those of C++. The major
difference between Java and C++ lies in multiple inheritance, which Java has re-
placed with the simpler concept of interfaces. Java has a richer capacity for runtime
introspection than C++ (which is discussed in Chapter 5).

1.2.3 Distributed

Java has an extensive library of routines for coping with TCP/IP protocols like
HTTP and FTP. Java applications can open and access objects across the Net via
URLs with the same ease as when accessing a local file system.

Nowadays, one takes this for granted, but in 1995, connecting to a web server
from a C++ or Visual Basic program was a major undertaking.

1.2.4 Robust

Java is intended for writing programs that must be reliable in a variety of ways.
Java puts a lot of emphasis on early checking for possible problems, later dynamic
(runtime) checking, and eliminating situations that are error-prone. . . The single
biggest difference between Java and C/C++ is that Java has a pointer model that
eliminates the possibility of overwriting memory and corrupting data.

The Java compiler detects many problems that in other languages would show
up only at runtime. As for the second point, anyone who has spent hours chasing
memory corruption caused by a pointer bug will be very happy with this aspect
of Java.

1.25 Secure

Java is intended to be used in networked/distributed environments. Toward that
end, a lot of emphasis has been placed on security. Java enables the construction of
virus-free, tamper-free systems.

1.2 The Java “White Paper” Buzzwords

From the beginning, Java was designed to make certain kinds of attacks impossible,
among them:

¢ Overrunning the runtime stack—a common attack of worms and viruses
¢ Corrupting memory outside its own process space
® Reading or writing files without permission

Originally, the Java attitude towards downloaded code was “Bring it on!” Un-
trusted code was executed in a sandbox environment where it could not impact
the host system. Users were assured that nothing bad could happen because Java
code, no matter where it came from, was incapable of escaping from the sandbox.

However, the security model of Java is complex. Not long after the first version
of the Java Development Kit was shipped, a group of security experts at Princeton
University found subtle bugs that allowed untrusted code to attack the host
system.

Initially, security bugs were fixed quickly. Unfortunately, over time, hackers got
quite good at spotting subtle flaws in the implementation of the security
architecture. Sun, and then Oracle, had a tough time keeping up with bug fixes.

After a number of high-profile attacks, browser vendors and Oracle became in-
creasingly cautious. Java browser plug-ins no longer trust remote code unless it
is digitally signed and users have agreed to its execution.

p NOTE: Even though in hindsight, the Java security model was not as successful
as originally envisioned, Java was well ahead of its time. A competing code
delivery mechanism from Microsoft relied on digital signatures alone for security.
Clearly this was not sufficient—as any user of Microsoft’s own products can
confirm, programs from well-known vendors do crash and create damage.

1.2.6 Architecture-Neutral

The compiler generates an architecture-neutral object file format—the compiled
code is executable on many processors, given the presence of the Java runtime system.
The Java compiler does this by generating bytecode instructions which have nothing
to do with a particular computer architecture. Rather, they are designed to be both
easy to interpret on any machine and easily translated into native machine code on

the fly.

Generating code for a “virtual machine” was not a new idea at the time. Program-
ming languages such as Lisp, Smalltalk, and Pascal had employed this technique
for many years.

Chapter 1 m An Introduction to Java

Of course, interpreting virtual machine instructions is slower than running ma-
chine instructions at full speed. However, virtual machines have the option of
translating the most frequently executed bytecode sequences into machine code—a
process called just-in-time compilation.

Java’s virtual machine has another advantage. It increases security because it can
check the behavior of instruction sequences.

1.2.7 Portable

Unlike C and C++, there are no “implementation-dependent” aspects of the
specification. The sizes of the primitive data types are specified, as is the behavior
of arithmetic on them.

For example, an int in Java is always a 32-bit integer. In C/C++, int can mean a
16-bit integer, a 32-bit integer, or any other size that the compiler vendor likes.
The only restriction is that the int type must have at least as many bytes as a short
int and cannot have more bytes than a Tong int. Having a fixed size for number
types eliminates a major porting headache. Binary data is stored and
transmitted in a fixed format, eliminating confusion about byte ordering. Strings
are saved in a standard Unicode format.

The libraries that are a part of the system define portable interfaces. For example,
there is an abstract Window class and implementations of it for UNIX, Windows, and
the Macintosh.

The example of a Window class was perhaps poorly chosen. As anyone who has ever
tried knows, it is an effort of heroic proportions to implement a user interface
that looks good on Windows, the Macintosh, and ten flavors of UNIX. Java 1.0
made the heroic effort, delivering a simple toolkit that provided common user
interface elements on a number of platforms. Unfortunately, the result was a li-
brary that, with a lot of work, could give barely acceptable results on different
systems. That initial user interface toolkit has since been replaced, and replaced
again, and portability across platforms remains an issue.

However, for everything that isn’t related to user interfaces, the Java libraries do
a great job of letting you work in a platform-independent manner. You can work
with files, regular expressions, XML, dates and times, databases, network connec-
tions, threads, and so on, without worrying about the underlying operating system.
Not only are your programs portable, but the Java APIs are often of higher quality
than the native ones.

1.2 The Java “White Paper” Buzzwords

1.2.8 Interpreted

The Java interpreter can execute Java bytecodes directly on any machine to which
the interpreter has been ported. Since linking is a more incremental and lightweight
process, the development process can be much more rapid and exploratory.

This seems a real stretch. Anyone who has used Lisp, Smalltalk, Visual Basic,
Python, R, or Scala knows what a “rapid and exploratory” development process
is. You try out something, and you instantly see the result. Java development
environments are not focused on that experience.

1.2.9 High-Performance

While the performance of interpreted bytecodes is usually more than adequate, there
are situations where higher performance is required. The bytecodes can be translated
on the fly (at runtime) into machine code for the particular CPU the application is
TUnning on.

In the early years of Java, many users disagreed with the statement that the per-
formance was “more than adequate.” Today, however, the just-in-time compilers
have become so good that they are competitive with traditional compilers and,
in some cases, even outperform them because they have more information
available. For example, a just-in-time compiler can monitor which code is executed
frequently and optimize just that code for speed. A more sophisticated optimiza-
tion is the elimination (or “inlining”) of function calls. The just-in-time compiler
knows which classes have been loaded. It can use inlining when, based upon the
currently loaded collection of classes, a particular function is never overridden,
and it can undo that optimization later if necessary.

1.2.10 Multithreaded

[The] benefits of multithreading are better interactive responsiveness and real-time
behavior.

Nowadays, we care about concurrency because Moore’s law is coming to an end.
Instead of faster processors, we just get more of them, and we have to keep them
busy. Yet when you look at most programming languages, they show a shocking
disregard for this problem.

Java was well ahead of its time. It was the first mainstream language to support
concurrent programming. As you can see from the white paper, its motivation
was a little different. At the time, multicore processors were exotic, but web pro-
gramming had just started, and processors spent a lot of time waiting for a

Chapter 1 m An Introduction to Java

response from the server. Concurrent programming was needed to make sure
the user interface didn’t freeze.

Concurrent programming is never easy, but Java has done a very good job making
it manageable.

1.2.11 Dynamic

In a number of ways, Java is a more dynamic language than C or C++. It was de-
signed to adapt to an evolving environment. Libraries can freely add new methods
and instance variables without any effect on their clients. In Java, finding out
runtime type information is straightforward.

This is an important feature in the situations where code needs to be added to a
running program. A prime example is code that is downloaded from the Internet
to run in a browser. In C or C++, this is indeed a major challenge, but the Java
designers were well aware of dynamic languages that made it easy to evolve a
running program. Their achievement was to bring this feature to a mainstream
programming language.

p NOTE: Shortly after the initial success of Java, Microsoft released a product
called J++ with a programming language and virtual machine that were almost
identical to Java. At this point, Microsoft is no longer supporting J++ and has
instead introduced another language called C# that also has many similarities
with Java but runs on a different virtual machine. This book does not cover J++
or C#.

1.3 Java Applets and the Internet

The idea here is simple: Users will download Java bytecodes from the Internet
and run them on their own machines. Java programs that work on web pages are
called applets. To use an applet, you only need a Java-enabled web browser, which
will execute the bytecodes for you. You need not install any software. You get
the latest version of the program whenever you visit the web page containing the
applet. Most importantly, thanks to the security of the virtual machine, you never
need to worry about attacks from hostile code.

Inserting an applet into a web page works much like embedding an image. The
applet becomes a part of the page, and the text flows around the space used for
the applet. The point is, this image is alive. It reacts to user commands, changes
its appearance, and exchanges data between the computer presenting the applet
and the computer serving it.

1.3 Java Applets and the Internet

Figure 1.1 shows a good example of a dynamic web page that carries out sophis-
ticated calculations. The Jmol applet displays molecular structures. By using the
mouse, you can rotate and zoom each molecule to better understand its structure.
This kind of direct manipulation is not achievable with static web pages, but
applets make it possible. (You can find this applet at http://jmol.sourceforge.net.)

& - - i\[:;,J 1 http:ffjmol.sourceforge.netydemofaminoacids/ | B
x |ala- X |arg - x|asnf x |asp - B
alanine arginine asparagine aspartate

amino acids xleys- x|gn- x|gu- x|gy-
cystine glutamine glutamate glycine

_x|nis- x|l - X |leu- _x|lys-

histidine isoleucine leucine lysine

X |met- Xi|phe- _x|pro- _x|ser-

methionine phenylalanine proline serine

_xthr- x|trp- xtyr- x|val-

threonine tryptophan tyrosine valine

select * | select mainchain | select sidechain |

wireframe on | wireframe 0.1 | wireframe 0.2 |

cpk off | cpk 20% I cpk on I

label %a | label%n | label off |

color label white | color label none I

color atoms cpk | color atoms amino I

<1

Figure 1.1 The Jmol applet

When applets first appeared, they created a huge amount of excitement. Many
people believe that the lure of applets was responsible for the astonishing popu-
larity of Java. However, the initial excitement soon turned into frustration. Various
versions of the Netscape and Internet Explorer browsers ran different versions
of Java, some of which were seriously outdated. This sorry situation made it in-
creasingly difficult to develop applets that took advantage of the most current
Java version. Instead, Adobe’s Flash technology became popular for achieving
dynamic effects in the browser. Later, when Java was dogged by serious security
issues, browsers and the Java browser plug-in became increasingly restrictive.
Nowadays, it requires skill and dedication to get applets to work in your browser.
For example, if you visit the Jmol web site, you will likely encounter a message
exhorting you to configure your browser for allowing applets to run.

http://jmol.sourceforge.net

